37 research outputs found

    A temporal switch model for estimating transcriptional activity in gene expression

    Get PDF
    Motivation: The analysis and mechanistic modelling of time series gene expression data provided by techniques such as microarrays, NanoString, reverse transcription–polymerase chain reaction and advanced sequencing are invaluable for developing an understanding of the variation in key biological processes. We address this by proposing the estimation of a flexible dynamic model, which decouples temporal synthesis and degradation of mRNA and, hence, allows for transcriptional activity to switch between different states. Results: The model is flexible enough to capture a variety of observed transcriptional dynamics, including oscillatory behaviour, in a way that is compatible with the demands imposed by the quality, time-resolution and quantity of the data. We show that the timing and number of switch events in transcriptional activity can be estimated alongside individual gene mRNA stability with the help of a Bayesian reversible jump Markov chain Monte Carlo algorithm. To demonstrate the methodology, we focus on modelling the wild-type behaviour of a selection of 200 circadian genes of the model plant Arabidopsis thaliana. The results support the idea that using a mechanistic model to identify transcriptional switch points is likely to strongly contribute to efforts in elucidating and understanding key biological processes, such as transcription and degradation

    ReTrOS : a MATLAB toolbox for reconstructing transcriptional activity from gene and protein expression data

    Get PDF
    This work was supported through providing funds by the Biotechnology and Biological Sciences Research Council [BB/F005806/1, BB/F005237/1]; and the Engineering and Physical Sciences Research Council [EP/C544587/1 to DAR].BACKGROUND: Given the development of high-throughput experimental techniques, an increasing number of whole genome transcription profiling time series data sets, with good temporal resolution, are becoming available to researchers. The ReTrOS toolbox (Reconstructing Transcription Open Software) provides MATLAB-based implementations of two related methods, namely ReTrOS-Smooth and ReTrOS-Switch, for reconstructing the temporal transcriptional activity profile of a gene from given mRNA expression time series or protein reporter time series. The methods are based on fitting a differential equation model incorporating the processes of transcription, translation and degradation. RESULTS: The toolbox provides a framework for model fitting along with statistical analyses of the model with a graphical interface and model visualisation. We highlight several applications of the toolbox, including the reconstruction of the temporal cascade of transcriptional activity inferred from mRNA expression data and protein reporter data in the core circadian clock in Arabidopsis thaliana, and how such reconstructed transcription profiles can be used to study the effects of different cell lines and conditions. CONCLUSIONS: The ReTrOS toolbox allows users to analyse gene and/or protein expression time series where, with appropriate formulation of prior information about a minimum of kinetic parameters, in particular rates of degradation, users are able to infer timings of changes in transcriptional activity. Data from any organism and obtained from a range of technologies can be used as input due to the flexible and generic nature of the model and implementation. The output from this software provides a useful analysis of time series data and can be incorporated into further modelling approaches or in hypothesis generation.Publisher PDFPeer reviewe

    High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation

    Get PDF
    Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a highresolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence

    Changes in gene expression in space and time orchestrate environmentally mediated shaping of root architecture

    Get PDF
    Shaping of root architecture is a quintessential developmental response that involves the concerted action of many different cell types, is highly dynamic and underpins root plasticity. To determine to what extent the environmental regulation of lateral root development is a product of cell type preferential activities, we tracked transcriptomic responses to two different treatments that both change root development in Arabidopsis thaliana, at an unprecedented level of temporal detail. We found that individual transcripts are expressed with a very high degree of temporal and spatial specificity, yet biological processes are commonly regulated, in a mechanism we term response nonredundancy. Using causative gene network inference to compare the genes regulated in different cell types and during responses to nitrogen and a biotic interaction we found that common transcriptional modules often regulate the same gene families, but control different individual members of these families, specific to response and cell type. This reinforces that the activity of a gene cannot be defined simply as molecular function; rather, it is a consequence of spatial location, expression timing and environmental responsiveness

    Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Get PDF
    Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusions Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors

    Archaeobotanical components of grave goods in prehistoric tumuli 6 and 7 at the archaeological site of Kaptol-Gradci, near Požega (Croatia)

    Get PDF
    The Iron Age site of Kaptol-Gradci belongs to the south-eastern periphery of the Hallstatt cultural complex, dominated primarily by the Kaptol cultural group, and encompasses a hillfort settlement and necropolis. During the investigation campaigns organized to date, 25 tumuli have been identified and 17 of them investigated. This paper presents the first results of the analysis of plant remains from a Hallstatt necropolis in Croatia, from tumuli 6 and 7, identified as an integral part of the complex burial ritual. In both tumuli, the predominant finds were of cereal grains (83% in tumulus 6 and 96.9% in tumulus 7). Besides the cereal grains, a very small quantity of weeds representing accidental associations have also been identified, as well as remains of wild fruits collected in the countryside. On the basis of the first results obtained from the archaeological site of Kaptol-Gradci and the scarce archaeobotanical research into Hallstatt necropolises in Europe, the conclusion can be drawn that a potential pattern can be observed, an element of a complex burial ritual in which cereal grains (overwhelmingly dominant in terms of their relative proportions) played an important role, together with various fruit deposits, whose type and quantity probably depended on the season, their availability in the environment and/or the possibility of their storage/preservation

    Transcriptional dynamics driving MAMP-triggered immunity and pathogen effector-mediated immunosuppression in Arabidopsis leaves following infection with Pseudomonas syringae pv tomato DC3000

    Get PDF
    Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae

    Wigwams : identifying gene modules co-regulated across multiple biological conditions

    Get PDF
    Motivation: Identification of modules of co-regulated genes is a crucial first step towards dissecting the regulatory circuitry underlying biological processes. Co-regulated genes are likely to reveal themselves by showing tight co-expression, e.g. high correlation of expression profiles across multiple time series datasets. However, numbers of up- or downregulated genes are often large, making it difficult to discriminate between dependent co-expression resulting from co-regulation and independent co-expression. Furthermore, modules of co-regulated genes may only show tight co-expression across a subset of the time series, i.e. show condition-dependent regulation. Results: Wigwams is a simple and efficient method to identify gene modules showing evidence for co-regulation in multiple time series of gene expression data. Wigwams analyzes similarities of gene expression patterns within each time series (condition) and directly tests the dependence or independence of these across different conditions. The expression pattern of each gene in each subset of conditions is tested statistically as a potential signature of a condition-dependent regulatory mechanism regulating multiple genes. Wigwams does not require particular time points and can process datasets that are on different time scales. Differential expression relative to control conditions can be taken into account. The output is succinct and non-redundant, enabling gene network reconstruction to be focused on those gene modules and combinations of conditions that show evidence for shared regulatory mechanisms. Wigwams was run using six Arabidopsis time series expression datasets, producing a set of biologically significant modules spanning different combinations of conditions. Availability and implementation: A Matlab implementation of Wigwams, complete with graphical user interfaces and documentation, is available at: warwick.ac.uk/wigwams
    corecore